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Abstract. This paper deals with the Generalized Linear Models, an extension of
the linear modeling process that allows models to be fit to data that follow
probability distributions other than the Normal distribution, such as the Poisson,
Binomial, Multinomial, and etc. Also, the Generalized Linear Models can be used
for a non-linear distribution.

In the first chapter, we will begin by discussing the past problem of looking at the
data using the simple linear regression models. We then introduce the Generalized
Linear Models (GLM), and the characteristics of GLM to give a better understanding
of the model. First, we discuss the components of GLM and the simple linear
regression models. It is easier to compare both models when we understand the
basic components of them. Then we discuss the Link Function, one of the major
characteristics of GLM which allows the model to follow distributions other than
Normal. Finally, we move to the Simpson’s paradox and the Interaction test, yet
another important aspect when we discuss GLM modeling. It helps us to
understand the importance of GLM and multivariate tests when analyzing datasets
with multiple parameters.

Chapter 3 discusses about The “Optimal” model. It is useful to understand what
exactly the “Optimal” model is and what kind of procedures should be taken to
achieve the “Best” model for GLM modeling process.

The auto insurance dataset is introduced for modeling example in chapter 4. GLM
modeling software called EMBLEM was used for the modeling process. In
EMBLEM, many useful applications including the statistics test for significance of
each parameter, Interaction tests for multiple parameters, and many other
functions are available for better and easier modeling. Since it is important to
understand which application should be used for certain process, the process for
GLM modeling will also be discussed in this chapter.

1. Introduction

a. The data

Statistical models contain both systematic effect and random effect. The value of a
model is that often it suggests a simple summary of the data in terms of the major
systematic effects together with a summary of the nature and magnitude of the
random variation. Regression analysis plays a central role in statistics being one of
its most powerful and commonly used techniques for analyzing models and
predicting the future trend. However, the simple linear regression is not always the
best choice due to following issues. First of all, the dependent variable of interest
may have a non-continuous distribution. Therefore, the predicted values should
also follow the respective distribution. However, since the simple linear regression
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is based on the assumption that the response variable follows the normal
distribution only, it may not be the best method to analyze the model which follows
the non-normal distribution. Another reason why the simple regression model
might be inadequate to describe a particular relationship is that the effect of the
predictors on the dependent variable may not be linear in nature. For example, the
relationship between a person's age and various indicators of health is most likely
not linear in nature. Therefore, the simple linear regression model may not be
suitable for data which carries these characteristics.

b. Introducing the Generalized Linear Models

The Generalized Linear Models is an extension of the linear modeling process. In
other words, they extend the ideas of regression analysis to a wider class of
problems involving the relationship between a response and one or more
explanatory variables. For example, in a situation in which a patient takes a
standard treatment we might consider how the probability of success depends on
the patient's age, weight, blood pressure and so on. Also, they can be used for
models which do not follow the normal distribution like Poisson, binomial, gamma
and others. The link function is used to model responses when a dependent
variable is assumed to be nonlinearly related to the predictors. In conclusion, the
Generalized Linear Models can be used to predict responses both for dependent
variable with non-continuous distribution and for dependent variables which are
non-linearly related to the predictors.

2. Characteristics of GLM Model

a. The difference between GLM and Simple Regression Models

It is important to understand the difference between simple linear regression
models and generalized linear models. Even though the basic components for both
models are similar, there are a few characteristics of GLM which make a big
difference.

Let y be a vector of observations, and let X be a matrix of covariates. The usual
simple linear regression models (usually multiple regression models) take the form

P
E(Y)=u=n=p0,+D B (1)
=1

where Bj are vectors of regression coefficients. Typically we assume that the Y;are
normal and independent with standard deviation o, so that we estimate Bj by
minimizing the sum of squares which can be stated as (y - p)'(y - p).

In this case, the most important and common case is that in which the yi and p; are
bounded. However, if we assume that y is binary, y = 1 if an animal survives and y
= 0 if it does not say, then 0 < u < 1. Then the simple linear model is inadequate in
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these cases because complicated and unnatural constraints on f would be required

to make sure that p stays in the possible range. Therefore, the simple linear
regression model cannot be a good solution for those datasets. Generalized linear

models instead assume a link linear relationship.
E(Y)=9(u) =B+ B+ A+ Bix @

The link function g(u) serves to link the random or stochastic component of the
model, the probability distribution of the response variable, to the systematic
component of the model (the linear predictor). Typically g( ) is used to transform
the y; to a scale on which they are unconstrained. As we can see, the Link Function
plays an important role in GLM. We will not discuss the Link Function used in the
generalized linear models.

b. The Link Function

In simple linear models, the mean and the linear predictor are identical and the
identity link is plausible in that both the linear predictor and the expected value
can take any value on the real line. However, it does not fit well with the GLM
because The link function in GLM specifies a nonlinear transformation of the
predicted values so that the distribution of predicted values is one of several
members of well-known distributions like Gamma, Poisson, binomial and so on.
Therefore, it is used to model responses when a dependent variable is assumed to
be nonlinearly related to the predictors.

Various link functions are commonly used, depending on the assumed distribution
of the dependent variable (y) values. Log link function is commonly used for
Poisson, Gamma, and Normal and Inversed Normal distributions. However, Identity
and Power link functions are available for them also.

Identity link: flz) =z
Log link: f(z) = log(z)
Power link: f(z) = za, for a given a

For Power link, each a value refers the following distributions:

=0, Normal error structure
=1, Poisson error structure
=2, Gamma error structure

For Binomial and other Multinomial distributions, Logit link function is preferred
since the link should satisfy the condition that the expected value maps the
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interval (0, 1) on to the whole real line. Also, other link functions are available
along with Logit link.

Logit link:  f(z)=log(z/(1-2))

Probit link: f(z)=invnorm(z)  where invnorm is the inverse of the standard
normal cumulative distribution function.

Complementary log-log link:  f(z)=log(-log(1-z))

Loglog f(z)=-log(-log(z))
link:

Usually, Poisson is used for the Frequency data since the Frequency states how
many accidents are happening during the given period. For the Severity data,
Gamma is commonly used. In the example which we will do the next section, we
will use the Severity data to do the GLM modeling.

c. One-way analysis

It is convenient to analyze One-way tables since they give an immediate view of
where exposures are and may show trends in claims experience. However, by using
one-way tables only, correlations between explanatory variables would not be taken
into account. When there are multiple rating parameters in the model, many
correlations can exist between those parameters. Therefore, one-way analysis may
not be the best solution for large models.

d. Simpson’s Paradox

Another problem we face when analyzing the data with multiple parameters is
Simpson’s Paradox. It happens when we consider two parameters separately, and
then consider them altogether. Suppose there are two hospitals A and B. Each
hospital treats same kind of disease. Suppose there are two types of patients,
Severe and Mild. If we look at the table down below, it is not hard to find out that
the mortality rate of Hospital A and B for each type of patients are in fact same.
However, when we look at the overall mortality rate, the mortality rate for each

Hospital is now very different. If we think the other way around, the data shows
one hypothesis, but that hypothesis gets reserved when we add another parameter
to it. So it is important to check the multivariate table and check if the interaction
effect exists.

Severe Mild Total
Hospital A 140/70 30/300 170/1,000
Hospital B 60/300 70/700 130/1,000
Total 200/1,000 100/1,000 300/2,000

e. Example Trends - Risk Premium Modeling

As mentioned in previous sections, it is important to identify not only the pure
effect of one parameter but also the effect of multiple parameters altogether. One-
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way analysis is still important to identify the pure effect of one parameter. However,
we also need to analyze the effect of multiple parameters simultaneously because
correlations may exist between any of them.
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The table shown above is the frequency model of policyholder’s age from auto
insurance data. It shows a pure effect of the policyholder age parameter without
considering any other parameter which means only the effect of the policyholder’s
age is considered for the result. As observed, young people tend to have higher
claim frequency in this model. We can conclude that the young —aged group has
higher claim frequency because young people have less driving experience and are
also less careful. On the other hand, old-aged group (especially those who reached
the retirement age) has higher claim frequency compared to the middle-aged group,
because as people get older their ability to keep control decreases.
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This result, however, gets reversed if we add the driving restriction parameter to
the previous analysis. Young-aged group still have highest claim frequency. But
there is a strange trend showing at the middle aged group. Why has this
happened? By adding the driving restriction parameter, we now allow policyholders
that their kids can be included in the insurance policy. Since they are young
people themselves, they would have high claim frequency. It is important to
understand that the model considering one parameter and the model comparing
two parameters produces significant different results because the second

parameter affects the first one.

Another correlation can be identified when looking at the multivariate table
between policyholder age and gender parameters. Overall, men have lower claim
frequency than women. However, if we only consider a young group, it is clear that
the result is not different. We can conclude that young women have advantage
against young men in claim frequency and should have lower risk because of it.

Mecidental Demage Claim Frequency Analysis - Policyholder £ ge by Gender
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As we can see, more significant signals were revealed when we added different
parameters to the original model with the pure effect of policyholder’s age
parameter. Therefore, more sophisticated techniques are required since we need to
consider all factors simultaneously.

f. Main Effect Model vs. The Interaction Model

Sometimes, it is necessary to add interactions when building a model. Main effect
model can be useful to find the major trends for each parameter, but may not be so
when considering correlations between multiple parameters. For example, consider
the Policyholder’s age and Policyholder’s sex parameters from the previous section.
It is clear that there is a correlation between two parameters since the frequency
between two sexes gets reversed as their age gets older. Therefore, in this case,
adding interactions in the model may be necessary.
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Ade/Sex Male Female
10-19 po pO+a?
2029 po+ p2 pO + a2+ p2
30-39 po+ p3 pO + a2t p3
40~ pO+ pa PO+ a2 + pa
Age/Sex Male Female
10-19 po pO+a2
20-29 pO+ B2 BO + ul+ B2+ (ap)22
30-39 BO+ B3 BO + a2+ B3 + (up)Z3
40— PO+ B4 | PO+ a2 + pa + (ap)24

g(p,) = B+ o, + B

g(plj) = ﬁ?ﬁ + az + l?j + (aﬁ?)zj
=0 A=0

af =0 cffi; =0 of; =0
af, =0 af, =0

Main Effect Model (Above) vs. the Interaction Model (Below)

We only need 5 variables to analyze the main effect model. However, we need 3
additional variables to analyze the interaction. Therefore, by adding interactions
the model gets more complicated. It is important to keep a good balance between

accuracy of the model and understandability.
accuracy of the predictions can be improved but maybe spurious accuracy.

3. GLM Modeling

a. What is a ‘Good’ Model?
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Our purpose of statistical modeling is to replace our data with a set of fitted values
derived from a model to minimize the random noise and to be able to predict the
future trend. When we use too few parameters when building a model, it will cause
a poor predictor of previous and future experience. If that is true, one can simply
assume that the ‘Good’ model is a model which fits the observed data as close as
possible. However, if we use too many parameters to make a ‘Perfect’ fit, it can also
be a bad choice. Yes, the model can show a good predictor of previous experience,
but it can also show poor predictor of future experience. In conclusion, a ‘Good’
model is a model which do not only fit the observed data well, but also be able to
predict the future trend. Not only that, the model should have some simple
theoretical pattern for the raged data. Therefore, in order to create a good model,
we need to exclude any parameter which is not significant to the data. Down below
is graph of two models, one with too many parameters and one with too few
parameters. Model with too many parameters cause an “Over-fitting” problem. The
overall mean is small, but the variance is large. On the other hand, the model with
too few parameters causes an “Under-fitting” problem. Which means the overall
mean is large, but the variance is small. It is wise to avoid either problem. We can
do this by using multiple methods.

b. Process of finding the Best Model

The main process of finding the Best Model can be defined by two ways. One is to
simplify the model, and another is to complicate it. By using both methods, we can
fit the model to the observed data, and also see for the future trend. There are two
methods to check the significance for each parameter to simply the model. One is
to check for a standard error. And another is to use a Chi-Square test or F-test
statistics. Suppose there is one parameter we want to check for significance. First,
we can run the test and find out the standard error. If the standard error is high,
then we can say that the parameter is not significant for the model. Next, we can
run either Chi-Square tests or F-tests. If the statistic is above the acceptable
standard, (usually 5%) then we can conclude that the parameter is not significant
enough to be used in the model. Of course, if the result is not clear, then we have
to use our own judgment to make a decision whether the parameter should be
included in the model or not. By test each parameters for significance, we can
simplify the model by reducing the parameters used in the model. However, we also
need to complicate the model so we can check the systematic effect better. Usually
we create interactions so we can avoid the Simpson’s paradox when analyzing
multiple parameters altogether.

4. Practical Example: Auto Insurance Data Modeling

a. Getting Started

In this chapter, we used the auto insurance data as an example of GLM modeling.
EMBLEM, a GLM statistical modeling program was used for analyzing the data.
Both the Frequency and the Severity data were introduced and used to compare
results between them. Poisson log link function was used for the Frequency data,
and Gamma log link function was used for the Severity data.
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As shown above, all the rating factors were selected and used for fitting the model.
In our next section, we will discuss how to simplify the model by eliminating
parameters which do not play significant roles in the model.

b. Simplifying the Model: Eliminate Parameters

The idea behind any statistical model is to fit a parsimonious model to the data, i.e.
the model with fewest parameters that adequately describes the data. A model can
be simplified in multiple ways. In this section, we will discuss about elimination of
certain rating factors, the most straightforward model simplification method. Factors that are
candidates for removal can be identified as follows:

e Factors where all the levels have small parameter estimates.

e Factors where the parameter estimates are all within two standard errors of
zero, i.e. the standard error percentages are all greater than 50%.

e Factors which do not exhibit consistent trends for each time period.

e Factors which, when excluded from the model, result in models that are not
significantly different from the original on a chi-squared basis.

e Factors which do not exhibit sensible trends (although judgment is required to
determine what a sensible trend is).

Let’s take a look at the factor "Class of Use" in our dataset.
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The value for the mean refers to a risk that is the base for all factors. Since this is
the Severity dataset result, the value is the expected severity for the base risk on a
linear predictor scale. The base level of each simple factor and custom factor
included in the model is highlighted blue. In the screen above, the value of the
mean is 6.8842. Since we used the Severity model using a gamma error structure
with a log link function from the beginning, the expected Severity for overall mean
is 976.7263, which can also be expressed as Exp(6.8842). When a fitted model has
a log link function, the table of fitted parameters includes an additional column
showing the exponential of the linear predictor. This gives easy access to the
relativities of different levels to the base level. The value for each non-base rating
factor is the expected Severity on a log scale relative to the base risk. For the
example above, a risk that is base for all rating factors other than "Affinity Scheme"
(when "N" is base), with a value for "Affinity Scheme: Y" of -0.0284, will have an
actual expected average cost Exp(6.8842-0.0284). An alternative interpretation is
that the non-standard risk will have an actual expected average cost that is 0.9720
times smaller than the base risk.

The Standard Error (%) field plays an important role to verify which parameters are
significant and which not. The standard error percentages for “Class of Use” factor
are over 50%. In EMBLEM, we can easily check the level of significance by looking
at the color of font. If the color is green, it means the standard error percentage is
below 50% and the parameter is therefore significant. If it is above 50%, then the
color changes (green -> grey -> red).

There is a non-statistical method for the exclusion/inclusion of a factor which is
available to use in EMBLEM. It is to check how consistent any trends are for each
time period. This can be achieved by fitting a time interaction with the factor being
considered.
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From this time interaction graph, it is apparent that the factor "Class of Use" does
not exhibit consistent trends for each time period.

A good statistical test for the exclusion/inclusion of a factor is to see whether a
model that includes the factor is significantly different from one that excludes the
factor. This test can be carried out by fitting two models, one that includes the
factor under consideration and another that excludes the factor. The results of the
models can be compared using the F and chi-squared tests which is available in
EMBLEM. Suppose we set a model which includes all parameters as a reference
model. Then we exclude the “Class of Use” parameter, and compare the model with
a reference model. Both chi-squared and F tests statistics are given to verify the
significance between two models.
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It is important to understand that the results of the F and chi-squared tests are
shown in yellow boxes at the bottom of the lower grid. A low p-value for the tests
indicates the two models are statistically different. However, as we can see, the
results are shown in white boxes at the bottom. It indicates that models are not
significantly different. Therefore, the exclusion of "Class of Use" is statistically
justified. Bear in mind that a simplified model which is not significantly different
from the unsimplified model is a more parsimonious model.

We can simply the model by editing parameters using grouping, smoothing, and
other methods which are available in EMBLEM. By doing these methods, we are
able to interpret the trend or effect for each parameter more easily and efficiently.
For example, down below is an example of grouping and smoothing the
policyholder age parameter. If we take a look at the graph without doing any
editing, it is hard to see the trend of the parameter. However, we can use grouping
and smoothing to simplify the parameter. By doing this, we are able to see the
trend more clearly.
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c. Interaction Tests

An interaction occurs in a dataset when the parameter estimates for a rating factor
depend on the level of another rating factor. A common example found in motor
insurance is that the experience of younger females is better than that for younger
males, whereas the experience of older females is the same (or worse) than for older
males. This time, we will look at the Frequency dataset.
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In this case, we should considering fitting interactions because there is a strong
trend between two parameters. By fitting interactions we are essentially breaking
the data down into finer and finer segments. This will generate more random
fluctuations in experience, and a considerable amount of judgment is required to
separate true underlying interactions from random noise.

However, more interactions are not always good when we want to find the “Best”
model. To determine whether the interaction under investigation is sensible and
should be retained in the final model, you should consider several factors.
Remember that we need a model which is most simplified within same significance
level. This means that we do not need any additional parameters which will not

affect the significance of the model.
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Let’s get back to the Severity model. If we do an interaction test for same
parameters as the Frequency model, it is obvious that there does not seem to be
any strong trend between two parameters. Yet, we are not sure whether this
interaction is significant enough to include the model or not. Therefore, it is

necessary to run the statistical test as before.
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When interpreting these tests, remember that adding an interaction term makes a
model more complicated. If two models are not significantly different, the least
complicated model (the model with the fewest parameters) is the model of choice.
As we can see, the Chi-square statistics is 5.7% which is slightly over 5%.
Therefore, we can say that there is not enough evidence to say these two models
are significantly different. In conclusion, it is not really necessary to include this
interaction to the model because we need the least complicated model.
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This decision, however, can be reversed if we take a look at the Frequency model.
As we found out earlier, the interaction between two parameters in the Frequency
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model showed strong trend against each other. Clearly, the Policyholder sex
parameter affects the Policyholder age parameter. If we run the statistics tests for
this model, then it is clear that both the F and the Chi-Square statistics are below
5%. Even though our goal is to build the least complicated model, it is necessary to
include the interaction because the trend is strong enough to affect the significance
of the model.

d. Process of GLM Modeling

It is important to understand the whole process of GLM Modeling since a certain
method can be used in a wrong period of processing. After we begin GLM modeling
process, first of all, we have to look into each parameter and understand the
importance and relevance. Sometimes, it is important to include a certain
parameter even though it does not affect the significance of the model. After that,
we can run a Univariate test. Test each parameter for significance and then decide
which parameters will be included and which will not. It is quite useful to test
parameters which were significant parameters from the past experience. After
simplifying the model by reducing the number of parameters used in the mode, we
then move to the Interaction tests for remain parameters. It is useful to check if
there is any relationship between parameters which will eventually cause the
Simpson’s paradox if we only use univariate analysis. Then we repeated these
procedures until we believe that our model is the “Best” model to use. EMBLEM
not only allows users to do GLM Modeling by enabling many useful applications,
but also allows them to do the modeling more easily and efficiently. In fact,
applications of EMBLEM are easy to understand so even non-statisticians can use
them without having to understand how GLM works in the mathematics term.

5. Summary and Conclusion

By using the GLM modeling, we are able to analyze the dataset which does not
follow the Normal distribution. We can even analyze the dataset which is not
linearly distributed. Multiple useful yet practical distributions like Poisson,
Binomial, Gamma and others are available to analyze the error structure.
Interaction tests are available so that we can avoid the Simpson’s Paradox while
doing the multivariate analysis. Therefore, GLM helps us to analyze the large
dataset with multiple response parameters more easily and efficiently. By using
GLM, we can even add a newly founded response parameter to the model while
verify it statistically.

EMBLEM makes the techniques of multivariate analysis accessible and
approachable to both the statistician and non-statistician alike, thereby
dramatically reducing the training required to model successfully and to produce
results. More importantly, it allows the user to focus on the analysis itself and to
impart his or her expertise in order to add value to the statistical process.
EMBLEM not only provides us useful statistical or non-statistical test which were
introduced throughout this paper, but also proves us more advanced techniques
such as stepwise regression, underwriting scoring, and others. Also, by enabling
VBA standard macros, EMBLEM saves us a lot of time and effort doing the
modeling.

Even though these techniques are now available for us to use, we must not forget
that they are not the ultimate solution for modeling and getting the “Best” result.
GLM modeling and the EMBLEM tool only helps us to do our job easily. However,
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they will only help us to get through the touch processing. In the end, our
judgment is most important for modeling, and we will be able to improve it with
more modeling experience.
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