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Abstract.  This paper deals with the Generalized Linear Models, an extension of 
the linear modeling process that allows models to be fit to data that follow 
probability distributions other than the Normal distribution, such as the Poisson, 
Binomial, Multinomial, and etc. Also, the Generalized Linear Models can be used 
for a non-linear distribution.  
 
 In the first chapter, we will begin by discussing the past problem of looking at the 
data using the simple linear regression models. We then introduce the Generalized 
Linear Models (GLM), and the characteristics of GLM to give a better understanding 
of the model. First, we discuss the components of GLM and the simple linear 
regression models. It is easier to compare both models when we understand the 
basic components of them. Then we discuss the Link Function, one of the major 
characteristics of GLM which allows the model to follow distributions other than 
Normal. Finally, we move to the Simpson’s paradox and the Interaction test, yet 
another important aspect when we discuss GLM modeling. It helps us to 
understand the importance of GLM and multivariate tests when analyzing datasets 
with multiple parameters.  
 
Chapter 3 discusses about The “Optimal” model.  It is useful to understand what 
exactly the “Optimal” model is and what kind of procedures should be taken to 
achieve the “Best” model for GLM modeling process.  
The auto insurance dataset is introduced for modeling example in chapter 4. GLM 
modeling software called EMBLEM was used for the modeling process. In 
EMBLEM, many useful applications including the statistics test for significance of 
each parameter, Interaction tests for multiple parameters, and many other 
functions are available for better and easier modeling. Since it is important to 
understand which application should be used for certain process, the process for 
GLM modeling will also be discussed in this chapter.  
 
 
1. Introduction 
 
a. The data 

Statistical models contain both systematic effect and random effect. The value of a 
model is that often it suggests a simple summary of the data in terms of the major 
systematic effects together with a summary of the nature and magnitude of the 
random variation. Regression analysis plays a central role in statistics being one of 
its most powerful and commonly used techniques for analyzing models and 
predicting the future trend. However, the simple linear regression is not always the 
best choice due to following issues. First of all, the dependent variable of interest 
may have a non-continuous distribution. Therefore, the predicted values should 
also follow the respective distribution. However, since the simple linear regression 
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is based on the assumption that the response variable follows the normal 
distribution only, it may not be the best method to analyze the model which follows 
the non-normal distribution. Another reason why the simple regression model 
might be inadequate to describe a particular relationship is that the effect of the 
predictors on the dependent variable may not be linear in nature. For example, the 
relationship between a person's age and various indicators of health is most likely 
not linear in nature. Therefore, the simple linear regression model may not be 
suitable for data which carries these characteristics.    

b. Introducing the Generalized Linear Models 
 
 The Generalized Linear Models is an extension of the linear modeling process. In 
other words, they extend the ideas of regression analysis to a wider class of 
problems involving the relationship between a response and one or more 
explanatory variables. For example, in a situation in which a patient takes a 
standard treatment we might consider how the probability of success depends on 
the patient's age, weight, blood pressure and so on. Also, they can be used for 
models which do not follow the normal distribution like Poisson, binomial, gamma 
and others. The link function is used to model responses when a dependent 
variable is assumed to be nonlinearly related to the predictors. In conclusion, the 
Generalized Linear Models can be used to predict responses both for dependent 
variable with non-continuous distribution and for dependent variables which are 
non-linearly related to the predictors.  

 
  
2. Characteristics of GLM Model 

 
a. The difference between GLM and Simple Regression Models 
 
It is important to understand the difference between simple linear regression 
models and generalized linear models. Even though the basic components for both 
models are similar, there are a few characteristics of GLM which make a big 
difference.  

Let y be a vector of observations, and let X be a matrix of covariates. The usual 
simple linear regression models (usually multiple regression models) take the form 
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where βj are vectors of regression coefficients. Typically we assume that the Yi are 
normal and independent with standard deviation σ, so that we estimate βj by 
minimizing the sum of squares which can be stated as (y -  μ)T(y -  μ). 

In this case, the most important and common case is that in which the yi and μi are 
bounded. However, if we assume that y is binary, y = 1 if an animal survives and y 
= 0 if it does not say, then 0 < μ < 1.  Then the simple linear model is inadequate in 
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these cases because complicated and unnatural constraints on β would be required 
to make sure that μ  stays in the possible range.  Therefore, the simple linear 
regression model cannot be a good solution for those datasets.  Generalized linear 
models instead assume a link linear relationship.  

jj xgYE βββμ +Λ++== 10)()(   (2) 

The link function g(μ) serves to link the random or stochastic component of the 
model, the probability distribution of the response variable, to the systematic 
component of the model (the linear predictor).  Typically g( ) is used to transform 
the μi to a scale on which they are unconstrained. As we can see, the Link Function 
plays an important role in GLM.  We will not discuss the Link Function used in the 
generalized linear models.  

b. The Link Function 

In simple linear models, the mean and the linear predictor are identical and the 
identity link is plausible in that both the linear predictor and the expected value 
can take any value on the real line. However, it does not fit well with the GLM 
because The link function in GLM specifies a nonlinear transformation of the 
predicted values so that the distribution of predicted values is one of several 
members of well-known distributions like Gamma, Poisson, binomial and so on. 
Therefore, it is used to model responses when a dependent variable is assumed to 
be nonlinearly related to the predictors.  

Various link functions are commonly used, depending on the assumed distribution 
of the dependent variable (y) values. Log link function is commonly used for 
Poisson, Gamma, and Normal and Inversed Normal distributions. However, Identity 
and Power link functions are available for them also. 

Identity link: f(z) = z 

Log link: f(z) = log(z) 

Power link: f(z) = za, for a given a 

 For Power link, each a value refers the following distributions: 

 a=0,   Normal error structure 

 a=1,  Poisson error structure 

 a=2,  Gamma error structure 

For Binomial and other Multinomial distributions, Logit link function is preferred 
since the link should satisfy the condition that the expected value maps the 
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interval (0, 1) on to the whole real line. Also, other link functions are available 
along with Logit link.  

Logit link: f(z)=log(z/(1-z)) 

Probit link: f(z)=invnorm(z) where invnorm is the inverse of the standard 
normal cumulative distribution function. 

Complementary log-log link: f(z)=log(-log(1-z)) 

Loglog 
link: 

f(z)=-log(-log(z)) 

 
Usually, Poisson is used for the Frequency data since the Frequency states how 
many accidents are happening during the given period. For the Severity data, 
Gamma is commonly used. In the example which we will do the next section, we 
will use the Severity data to do the GLM modeling.  
 
c. One-way analysis  
 
It is convenient to analyze One-way tables since they give an immediate view of 
where exposures are and may show trends in claims experience. However, by using 
one-way tables only, correlations between explanatory variables would not be taken 
into account. When there are multiple rating parameters in the model, many 
correlations can exist between those parameters. Therefore, one-way analysis may 
not be the best solution for large models.  
 
d. Simpson’s Paradox 
 
Another problem we face when analyzing the data with multiple parameters is 
Simpson’s Paradox. It happens when we consider two parameters separately, and 
then consider them altogether. Suppose there are two hospitals A and B. Each 
hospital treats same kind of disease. Suppose there are two types of patients, 
Severe and Mild. If we look at the table down below, it is not hard to find out that 
the mortality rate of Hospital A and B for each type of patients are in fact same. 
However, when we look at the overall mortality rate, the mortality rate for each  
 
Hospital is now very different. If we think the other way around, the data shows 
one hypothesis, but that hypothesis gets reserved when we add another parameter 
to it. So it is important to check the multivariate table and check if the interaction 
effect exists.  
 
 Severe Mild Total 

Hospital A 140/70 30/300 170/1,000 
Hospital B 60/300 70/700 130/1,000 

Total 200/1,000 100/1,000 300/2,000 
 
e. Example Trends - Risk Premium Modeling 
 
As mentioned in previous sections, it is important to identify not only the pure 
effect of one parameter but also the effect of multiple parameters altogether. One-
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way analysis is still important to identify the pure effect of one parameter. However, 
we also need to analyze the effect of multiple parameters simultaneously because 
correlations may exist between any of them.    
 

 
 
The table shown above is the frequency model of policyholder’s age from auto 
insurance data. It shows a pure effect of the policyholder age parameter without 
considering any other parameter which means only the effect of the policyholder’s 
age is considered for the result. As observed, young people tend to have higher 
claim frequency in this model. We can conclude that the young –aged group has 
higher claim frequency because young people have less driving experience and are 
also less careful. On the other hand, old-aged group (especially those who reached 
the retirement age) has higher claim frequency compared to the middle-aged group, 
because as people get older their ability to keep control decreases.  
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This result, however, gets reversed if we add the driving restriction parameter to 
the previous analysis. Young-aged group still have highest claim frequency. But 
there is a strange trend showing at the middle aged group. Why has this 
happened? By adding the driving restriction parameter, we now allow policyholders 
that their kids can be included in the insurance policy. Since they are young 
people themselves, they would have high claim frequency. It is important to 
understand that the model considering one parameter and the model comparing 
two parameters produces significant different results because the second 
parameter affects the first one.  
 
     Another correlation can be identified when looking at the multivariate table 
between policyholder age and gender parameters. Overall, men have lower claim 
frequency than women. However, if we only consider a young group, it is clear that 
the result is not different. We can conclude that young women have advantage 
against young men in claim frequency and should have lower risk because of it.  
 

 
 
 
As we can see, more significant signals were revealed when we added different 
parameters to the original model with the pure effect of policyholder’s age 
parameter.  Therefore, more sophisticated techniques are required since we need to 
consider all factors simultaneously.   
 
f. Main Effect Model vs. The Interaction Model 
 
Sometimes, it is necessary to add interactions when building a model. Main effect 
model can be useful to find the major trends for each parameter, but may not be so 
when considering correlations between multiple parameters. For example, consider 
the Policyholder’s age and Policyholder’s sex parameters from the previous section. 
It is clear that there is a correlation between two parameters since the frequency 
between two sexes gets reversed as their age gets older. Therefore, in this case, 
adding interactions in the model may be necessary.  
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  Main Effect Model (Above) vs. the Interaction Model (Below) 
 
We only need 5 variables to analyze the main effect model. However, we need 3 
additional variables to analyze the interaction. Therefore, by adding interactions 
the model gets more complicated. It is important to keep a good balance between 
accuracy of the model and understandability.  By adding more variables, the 
accuracy of the predictions can be improved but maybe spurious accuracy.  
 
 
3. GLM Modeling 

 
a. What is a ‘Good’ Model? 

 

 



JH YOO 
 

Our purpose of statistical modeling is to replace our data with a set of fitted values 
derived from a model to minimize the random noise and to be able to predict the 
future trend. When we use too few parameters when building a model, it will cause 
a poor predictor of previous and future experience. If that is true, one can simply 
assume that the ‘Good’ model is a model which fits the observed data as close as 
possible. However, if we use too many parameters to make a ‘Perfect’ fit, it can also 
be a bad choice. Yes, the model can show a good predictor of previous experience, 
but it can also show poor predictor of future experience. In conclusion, a ‘Good’ 
model is a model which do not only fit the observed data well, but also be able to 
predict the future trend. Not only that, the model should have some simple 
theoretical pattern for the raged data. Therefore, in order to create a good model, 
we need to exclude any parameter which is not significant to the data. Down below 
is graph of two models, one with too many parameters and one with too few 
parameters. Model with too many parameters cause an “Over-fitting” problem. The 
overall mean is small, but the variance is large. On the other hand, the model with 
too few parameters causes an “Under-fitting” problem. Which means the overall 
mean is large, but the variance is small. It is wise to avoid either problem. We can 
do this by using multiple methods.  
 
 
b. Process of finding the Best Model 
  
 The main process of finding the Best Model can be defined by two ways. One is to 
simplify the model, and another is to complicate it. By using both methods, we can 
fit the model to the observed data, and also see for the future trend. There are two 
methods to check the significance for each parameter to simply the model. One is 
to check for a standard error. And another is to use a Chi-Square test or F-test 
statistics. Suppose there is one parameter we want to check for significance. First, 
we can run the test and find out the standard error. If the standard error is high, 
then we can say that the parameter is not significant for the model. Next, we can 
run either Chi-Square tests or F-tests. If the statistic is above the acceptable 
standard, (usually 5%) then we can conclude that the parameter is not significant 
enough to be used in the model. Of course, if the result is not clear, then we have 
to use our own judgment to make a decision whether the parameter should be 
included in the model or not. By test each parameters for significance, we can 
simplify the model by reducing the parameters used in the model. However, we also 
need to complicate the model so we can check the systematic effect better. Usually 
we create interactions so we can avoid the Simpson’s paradox when analyzing 
multiple parameters altogether.  
 
 

4. Practical Example: Auto Insurance Data Modeling 
 
a. Getting Started 
 
 
In this chapter, we used the auto insurance data as an example of GLM modeling. 
EMBLEM, a GLM statistical modeling program was used for analyzing the data. 
Both the Frequency and the Severity data were introduced and used to compare 
results between them. Poisson log link function was used for the Frequency data, 
and Gamma log link function was used for the Severity data.  
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 As shown above, all the rating factors were selected and used for fitting the model. 
In our next section, we will discuss how to simplify the model by eliminating 
parameters which do not play significant roles in the model.  
 
 
b. Simplifying the Model: Eliminate Parameters 
 
The idea behind any statistical model is to fit a parsimonious model to the data, i.e. 
the model with fewest parameters that adequately describes the data. A model can 
be simplified in multiple ways. In this section, we will discuss about elimination of 
certain rating factors, the most straightforward model simplification method. Factors that are 
candidates for removal can be identified as follows: 
 
 
• Factors where all the levels have small parameter estimates. 
 
• Factors where the parameter estimates are all within two standard errors of 

zero, i.e. the standard error percentages are all greater than 50%. 
 
• Factors which do not exhibit consistent trends for each time period. 
 
• Factors which, when excluded from the model, result in models that are not 

significantly different from the original on a chi-squared basis. 
 
• Factors which do not exhibit sensible trends (although judgment is required to 

determine what a sensible trend is). 
 
Let’s take a look at the factor "Class of Use" in our dataset. 
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The value for the mean refers to a risk that is the base for all factors. Since this is 
the Severity dataset result, the value is the expected severity for the base risk on a 
linear predictor scale. The base level of each simple factor and custom factor 
included in the model is highlighted blue. In the screen above, the value of the 
mean is 6.8842. Since we used the Severity model using a gamma error structure 
with a log link function from the beginning, the expected Severity for overall mean 
is 976.7263, which can also be expressed as Exp(6.8842). When a fitted model has 
a log link function, the table of fitted parameters includes an additional column 
showing the exponential of the linear predictor. This gives easy access to the 
relativities of different levels to the base level. The value for each non-base rating 
factor is the expected Severity on a log scale relative to the base risk. For the 
example above, a risk that is base for all rating factors other than "Affinity Scheme" 
(when "N" is base), with a value for "Affinity Scheme: Y" of -0.0284, will have an 
actual expected average cost Exp(6.8842-0.0284). An alternative interpretation is 
that the non-standard risk will have an actual expected average cost that is 0.9720 
times smaller than the base risk. 
 
The Standard Error (%) field plays an important role to verify which parameters are 
significant and which not. The standard error percentages for “Class of Use” factor 
are over 50%. In EMBLEM, we can easily check the level of significance by looking 
at the color of font. If the color is green, it means the standard error percentage is 
below 50% and the parameter is therefore significant. If it is above 50%, then the 
color changes (green -> grey -> red).  
 
There is a non-statistical method for the exclusion/inclusion of a factor which is 
available to use in EMBLEM. It is to check how consistent any trends are for each 
time period. This can be achieved by fitting a time interaction with the factor being 
considered.  
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From this time interaction graph, it is apparent that the factor "Class of Use" does 
not exhibit consistent trends for each time period. 
 
A good statistical test for the exclusion/inclusion of a factor is to see whether a 
model that includes the factor is significantly different from one that excludes the 
factor. This test can be carried out by fitting two models, one that includes the 
factor under consideration and another that excludes the factor. The results of the 
models can be compared using the F and chi-squared tests which is available in 
EMBLEM. Suppose we set a model which includes all parameters as a reference 
model. Then we exclude the “Class of Use” parameter, and compare the model with 
a reference model. Both chi-squared and F tests statistics are given to verify the 
significance between two models. 
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It is important to understand that the results of the F and chi-squared tests are 
shown in yellow boxes at the bottom of the lower grid. A low p-value for the tests 
indicates the two models are statistically different. However, as we can see, the 
results are shown in white boxes at the bottom. It indicates that models are not 
significantly different. Therefore, the exclusion of "Class of Use" is statistically 
justified. Bear in mind that a simplified model which is not significantly different 
from the unsimplified model is a more parsimonious model. 
 
We can simply the model by editing parameters using grouping, smoothing, and 
other methods which are available in EMBLEM. By doing these methods, we are 
able to interpret the trend or effect for each parameter more easily and efficiently. 
For example, down below is an example of grouping and smoothing the 
policyholder age parameter. If we take a look at the graph without doing any 
editing, it is hard to see the trend of the parameter. However, we can use grouping 
and smoothing to simplify the parameter. By doing this, we are able to see the 
trend more clearly.  
 

 
 
 Policyholder Age Parameter – Before grouping and smoothing 
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  Policyholder Age Parameter – After grouping and smoothing 
 
 
 
 
c. Interaction Tests 
 
An interaction occurs in a dataset when the parameter estimates for a rating factor 
depend on the level of another rating factor. A common example found in motor 
insurance is that the experience of younger females is better than that for younger 
males, whereas the experience of older females is the same (or worse) than for older 
males. This time, we will look at the Frequency dataset.  
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In this case, we should considering fitting interactions because there is a strong 
trend between two parameters. By fitting interactions we are essentially breaking 
the data down into finer and finer segments. This will generate more random 
fluctuations in experience, and a considerable amount of judgment is required to 
separate true underlying interactions from random noise. 
 
However, more interactions are not always good when we want to find the “Best” 
model. To determine whether the interaction under investigation is sensible and 
should be retained in the final model, you should consider several factors. 
Remember that we need a model which is most simplified within same significance 
level. This means that we do not need any additional parameters which will not 
affect the significance of the model.  
 

 
 
Let’s get back to the Severity model. If we do an interaction test for same 
parameters as the Frequency model, it is obvious that there does not seem to be 
any strong trend between two parameters. Yet, we are not sure whether this 
interaction is significant enough to include the model or not. Therefore, it is 
necessary to run the statistical test as before.  
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When interpreting these tests, remember that adding an interaction term makes a 
model more complicated. If two models are not significantly different, the least 
complicated model (the model with the fewest parameters) is the model of choice. 
As we can see, the Chi-square statistics is 5.7% which is slightly over 5%. 
Therefore, we can say that there is not enough evidence to say these two models 
are significantly different. In conclusion, it is not really necessary to include this 
interaction to the model because we need the least complicated model. 
 

 
 
This decision, however, can be reversed if we take a look at the Frequency model. 
As we found out earlier, the interaction between two parameters in the Frequency 
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model showed strong trend against each other. Clearly, the Policyholder sex 
parameter affects the Policyholder age parameter. If we run the statistics tests for 
this model, then it is clear that both the F and the Chi-Square statistics are below 
5%. Even though our goal is to build the least complicated model, it is necessary to 
include the interaction because the trend is strong enough to affect the significance 
of the model.  
 
d. Process of GLM Modeling  
 
It is important to understand the whole process of GLM Modeling since a certain 
method can be used in a wrong period of processing. After we begin GLM modeling 
process, first of all, we have to look into each parameter and understand the 
importance and relevance. Sometimes, it is important to include a certain 
parameter even though it does not affect the significance of the model. After that, 
we can run a Univariate test. Test each parameter for significance and then decide 
which parameters will be included and which will not. It is quite useful to test 
parameters which were significant parameters from the past experience. After 
simplifying the model by reducing the number of parameters used in the mode, we 
then move to the Interaction tests for remain parameters. It is useful to check if 
there is any relationship between parameters which will eventually cause the 
Simpson’s paradox if we only use univariate analysis. Then we repeated these 
procedures until we believe that our model is the “Best” model to use. EMBLEM 
not only allows users to do GLM Modeling by enabling many useful applications, 
but also allows them to do the modeling more easily and efficiently. In fact, 
applications of EMBLEM are easy to understand so even non-statisticians can use 
them without having to understand how GLM works in the mathematics term.  
      

5. Summary and Conclusion 
 
 By using the GLM modeling, we are able to analyze the dataset which does not 
follow the Normal distribution. We can even analyze the dataset which is not 
linearly distributed. Multiple useful yet practical distributions like Poisson, 
Binomial, Gamma and others are available to analyze the error structure. 
Interaction tests are available so that we can avoid the Simpson’s Paradox while 
doing the multivariate analysis. Therefore, GLM helps us to analyze the large 
dataset with multiple response parameters more easily and efficiently. By using 
GLM, we can even add a newly founded response parameter to the model while 
verify it statistically.  
 
 EMBLEM makes the techniques of multivariate analysis accessible and 
approachable to both the statistician and non-statistician alike, thereby 
dramatically reducing the training required to model successfully and to produce 
results. More importantly, it allows the user to focus on the analysis itself and to 
impart his or her expertise in order to add value to the statistical process. 
EMBLEM not only provides us useful statistical or non-statistical test which were 
introduced throughout this paper, but also proves us more advanced techniques 
such as stepwise regression, underwriting scoring, and others. Also, by enabling 
VBA standard macros, EMBLEM saves us a lot of time and effort doing the 
modeling.  
 
 Even though these techniques are now available for us to use, we must not forget 
that they are not the ultimate solution for modeling and getting the “Best” result. 
GLM modeling and the EMBLEM tool only helps us to do our job easily. However, 
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they will only help us to get through the touch processing. In the end, our 
judgment is most important for modeling, and we will be able to improve it with 
more modeling experience.  
    

References 
  
[1] P. McCullagh and J.A. Nelder (1989), Generalized Linear Models (Second 

Edition), Chapman & Hall, London. 

[2] Dobson, A. (1990), An Introduction To Generalized Linear Models, London: 
Chapman and Hall.  

[3] Firth, D. (1991), "Generalized Linear Models," in Statistical Theory and 
Modelling, ed. Hinkley, D.V., Reid, N., and Snell, E.J., London: Chapman and 
Hall. 

[4] Nelder, J.A. and Wedderburn, R.W.M. (1972), "Generalized Linear Models," 
Journal of the Royal Statistical Society A, 135, 370 -384.  

 
YOO, JONG HWAN: Representative Consultant 
Seoul, Korea 
Cell Phone: 82 11 9263 5405 
Office       :  82 2 518 1024 
                   82 2 514 1026 
Fax:            82 2 514 1024 
E-mail: jhyoo@glisconsulting.com

mailto:jhyoo@glisconsulting.com

